3.120 \(\int \cos (c+d x) (a+a \sin (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=24 \[ \frac {2 (a \sin (c+d x)+a)^{5/2}}{5 a d} \]

[Out]

2/5*(a+a*sin(d*x+c))^(5/2)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2667, 32} \[ \frac {2 (a \sin (c+d x)+a)^{5/2}}{5 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(2*(a + a*Sin[c + d*x])^(5/2))/(5*a*d)

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rubi steps

\begin {align*} \int \cos (c+d x) (a+a \sin (c+d x))^{3/2} \, dx &=\frac {\operatorname {Subst}\left (\int (a+x)^{3/2} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac {2 (a+a \sin (c+d x))^{5/2}}{5 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 24, normalized size = 1.00 \[ \frac {2 (a \sin (c+d x)+a)^{5/2}}{5 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]*(a + a*Sin[c + d*x])^(3/2),x]

[Out]

(2*(a + a*Sin[c + d*x])^(5/2))/(5*a*d)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 40, normalized size = 1.67 \[ -\frac {2 \, {\left (a \cos \left (d x + c\right )^{2} - 2 \, a \sin \left (d x + c\right ) - 2 \, a\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{5 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-2/5*(a*cos(d*x + c)^2 - 2*a*sin(d*x + c) - 2*a)*sqrt(a*sin(d*x + c) + a)/d

________________________________________________________________________________________

giac [B]  time = 0.39, size = 133, normalized size = 5.54 \[ -\frac {1}{30} \, \sqrt {2} {\left (\frac {5 \, a \cos \left (\frac {1}{4} \, \pi + \frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} + \frac {3 \, a \cos \left (-\frac {1}{4} \, \pi + \frac {5}{2} \, d x + \frac {5}{2} \, c\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}{d} - \frac {30 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{d} - \frac {10 \, a \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {3}{2} \, d x + \frac {3}{2} \, c\right )}{d}\right )} \sqrt {a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/30*sqrt(2)*(5*a*cos(1/4*pi + 3/2*d*x + 3/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d + 3*a*cos(-1/4*pi + 5/2
*d*x + 5/2*c)*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))/d - 30*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(1/4*pi + 1/
2*d*x + 1/2*c)/d - 10*a*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))*sin(-1/4*pi + 3/2*d*x + 3/2*c)/d)*sqrt(a)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 21, normalized size = 0.88 \[ \frac {2 \left (a +a \sin \left (d x +c \right )\right )^{\frac {5}{2}}}{5 d a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*(a+a*sin(d*x+c))^(3/2),x)

[Out]

2/5*(a+a*sin(d*x+c))^(5/2)/d/a

________________________________________________________________________________________

maxima [A]  time = 1.51, size = 20, normalized size = 0.83 \[ \frac {2 \, {\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}{5 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

2/5*(a*sin(d*x + c) + a)^(5/2)/(a*d)

________________________________________________________________________________________

mupad [B]  time = 4.62, size = 20, normalized size = 0.83 \[ \frac {2\,{\left (a\,\left (\sin \left (c+d\,x\right )+1\right )\right )}^{5/2}}{5\,a\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)*(a + a*sin(c + d*x))^(3/2),x)

[Out]

(2*(a*(sin(c + d*x) + 1))^(5/2))/(5*a*d)

________________________________________________________________________________________

sympy [A]  time = 29.54, size = 90, normalized size = 3.75 \[ \begin {cases} \frac {2 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin ^{2}{\left (c + d x \right )}}{5 d} + \frac {4 a \sqrt {a \sin {\left (c + d x \right )} + a} \sin {\left (c + d x \right )}}{5 d} + \frac {2 a \sqrt {a \sin {\left (c + d x \right )} + a}}{5 d} & \text {for}\: d \neq 0 \\x \left (a \sin {\relax (c )} + a\right )^{\frac {3}{2}} \cos {\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*(a+a*sin(d*x+c))**(3/2),x)

[Out]

Piecewise((2*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)**2/(5*d) + 4*a*sqrt(a*sin(c + d*x) + a)*sin(c + d*x)/(5*d
) + 2*a*sqrt(a*sin(c + d*x) + a)/(5*d), Ne(d, 0)), (x*(a*sin(c) + a)**(3/2)*cos(c), True))

________________________________________________________________________________________